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Heat Conduction and Entropy Production in a One-Dimensional Hard-Particle Gas
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We present large scale simulations for a one-dimensional chain of hard-point particles with
alternating masses and correct several claims in recent literature based on much smaller simulations.
We find heat conductivities � to diverge with the number N of particles. These depended strongly on the
mass ratio, and extrapolations to N ! 1, and t ! 1, are difficult due to very large finite-size and
finite-time corrections. Nevertheless, our data seem compatible with a universal power law �� N� with
� � 0:33 suggesting a relation to the Kardar-Parisi-Zhang model. We finally discuss why the system
leads nevertheless to energy dissipation and entropy production, in spite of not being chaotic in the usual
sense.
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very steep jumps of temperature are effectively stabilized
and act as barriers to energy transport.

�1� r� �1� r�
(1)
Low-dimensional systems are special in many ways.
Second order phase transitions have anomalous expo-
nents, chemical reactions do not follow the mass action
law [1], hydrodynamics breaks down due to divergent
transport coefficients caused by long time tails [2], and
electrons in disordered systems are localized [3]. A last
item in this list is the divergence of heat conductivity [4]
in � 2 spatial dimensions.

For ordered (periodic) harmonic systems, it is well
known that all transport coefficients are infinite due to
the ballistic propagation of modes. Thus, one needs either
disorder or nonlinear effects in order to have finite con-
ductivity �. For electric conductivity, disorder in 1D leads
to zero conduction. The main difference between heat and
(electronic) charge conduction is that there is no back-
ground lattice in the former; i.e., translation invariance is
not broken even if the system is disordered. Of course, one
can study the electronic contribution to heat conduction,
but experimentally one never can neglect the ionic con-
tribution [5]. Thus, one has always soft (Goldstone)
modes in heat conduction. These soft modes are not
localized by disorder [6], and they are not affected by
nonlinearities. Thus, they propagate essentially freely. In
high dimensions, this has no dramatic consequences. But
in low dimensions they become important and lead to the
above mentioned divergence. More precisely, one expects
a power divergence �� N� in d � 1 and a logarithmic
divergence in d � 2. Simulations and calculations using
the Green-Kubo formula give � � 0:35 to 0.45 [4]. It is
not clear whether the slight discrepancies found between
different models are true or artifacts. Theoretically, one
would of course prefer a universal value.

There are some exceptions to this general scenario.
Apart from models with external potentials and broken
translation invariance, the best known 1D model with
finite � is the rotor model of [7,8]. Here very fast rotors
effectively decouple from their less fast neighbors. Thus,
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Another model which was recently claimed to have �
finite [9] is the 1D hard-point gas with alternating masses.
The same gas with all particles having the same mass is
trivial (a collision between particles is indistinguishable
from the particles just passing through each other undis-
turbed), and perturbations just propagate ballistically,
leading thus to infinite � (i.e., no temperature gradients
can build up inside the gas). To break this integrability, it
is sufficient to use alternating masses: every even-num-
bered particle has mass m1, and every odd has m2 � rm1

with r > 1 [9–15].
The arguments given above for a divergence of � with

N hold also for the hard-point gas. It is obviously non-
linear, sound waves dissipate, it is translation invariant,
and there is no obvious special feature as in the rotor
model. Indeed, prior to [9], heat conduction has been
studied in this system by means of simulations in
[13,14]. In these papers, it was claimed that � diverges.
But the simulations of [13] had presumably low statistics
(very few details were given), while the simulations of
[14] are obviously not yet in the scaling regime (N is too
small) and are compatible with � ! const for N ! 1. In
any case, the exponent � suggested by the simulations of
[14] is � 0:22, much smaller than for all other models.

In view of this confusing situation, and suspecting that
the simulations of [9,13,14] were not done most effi-
ciently, we decided to make some longer simulations.

We followed [14] in setting m1 � 1 and using
Maxwellian heat baths at the ends with T1 � 2, T2 � 8
(i.e., after hitting the end, a particle is reflected with a
random velocity distributed according to P�v� �
��	v�mv=T exp�
mv2=2T1;2�. The heat baths sit at x �
0 and x � N; i.e., the density of the gas is 1.When an even
particle with velocity v1 collides with an odd one with
velocity v2, their velocities after the collision are

v0
1 �

�1
 r�v1 � 2rv2 ; v0
2 �

2v1 � �r
 1�v2 :
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FIG. 1 (color). (a) Log-log plot of J=�T2 
 T1� versus N for
four values of r. Statistical errors are always smaller than the
data symbols. (b) Part of the same data divided by N� with
� � 0:32, so the y axis is much expanded.
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Between two collisions, the particles propagate freely.
Thus, a fast simulation algorithm is event driven: For
each particle i, we remember its velocity, the time ti of its
last collision (initially, ti is put to zero), and the position
xi it had at that time. In addition, we maintain a list of
future collision times �i for each neighboring pair
�i; i� 1� (here the walls are treated formally as particles
with v0 � vN�1 � 0; x0 � 0; xN�1 � N). The system is
evolved by searching the smallest �i, updating the triples
�ti; xi; vi� and �ti�1; xi�1; vi�1�, and calculating the new
future collision times �i
1 and �i�1 (the new �i is infinite).
Since the list f�ig is essentially a priority queue [16], we
use for it the appropriate data structure of a heap [16].
Using heaps, searching for the next collision takes a CPU
time O�lnN�. In comparison, a naive search would take
O�N�. This allowed us to make much larger simulations
than in previous works. Our largest systems contained
16 383 particles and were followed for > 1012 collisions.
In spite of this, we had to start with carefully tailored
initial configurations to keep transients short. When ob-
taining statistics, one should not forget that measure-
ments should not be made after a fixed number of
collisions, but at fixed intervals in real time. The correct-
ness of the results and the absence of transients were
checked by verifying that the energy density is constant,
as proven in [14].

Before presenting results, let us discuss the expected
dependence on the mass ratio r. For r ! 1, equilibration
becomes slow (it takes a long time until a fast particle is
slowed down to average speed), but perturbations propa-
gate ballistically. Thus, a perturbation will be damped out
slowly at first, but it will have no long time tails and is
damped exponentially. In the other extreme, for r ! 1
the light particles bounce between pairs of heavy ones
which are hardly perturbed. Thus, if a heavy particle is
perturbed, we have a situation very similar to the one for
r ! 1. If a light particle is perturbed, its energy is soon
given to its two nearest heavy neighbors, which then
behave again as for r � 1. In contrast, in the intermediate
region 1 � r � 1, we expect the perturbation to spread
nonballistically for all times. It is in this regime that we
expect the fastest convergence to asymptotic behavior,
both with respect to time and to N.

In Fig. 1(a), we show �, defined as total energy flux J �P
i miv

3
i =2 divided by �T, versus N, for four values of r.

The value r � 1:22 is in the small-r region and was
studied most intensively in [14]. The value r � 2:62 is
near the center of the intermediate regime, while r � 5 is
clearly above it. Finally, r � 1:618 � �1�

���
5

p
�=2 was

chosen because it was used in [9], not because of its
irrationality (problems with ergodicity related to rational
values of r exist only for very small N [11,12]).

A power law would give a straight line with slope � in
Fig. 1(a). None of the four curves is really straight. For
small N the curve for r � 1:22 agrees perfectly with Fig. 3
of [14] (which extends only to N � 1281). It shows the
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strongest curvature (in agreement with the above discus-
sion), and the small-N data alone would suggest a cross-
over to � � const. But this curvature stops for large N and
a closer look shows that the slope increases for N > 8000.
The same is true also for the other curves: They all bend
down for small N but veer up for larger systems [Fig. 1(b)].
This is most clearly seen for r � 1:618 and 2.62. It is less
clear for r � 5, but the most rational expectation is that
also this curve will have the same slope for N ! 1. Our
best estimate � � 0:32�0:03


0:01 has asymmetric errors be-
cause we do not know how much more the curves will
bend upwards for very large N.

The rescaled temperature profiles for r � 1:22 are
shown in Fig. 2. To verify the claim of [14] that T�x�
approaches the profile Tk�x� predicted by kinetic theory
with an inverse power of N, i.e., T�x� 
 Tk�x� � N
0:67,
we plot T�x� 
 Tk�x� against x=N. For N < 2000, we see
indeed this convergence in perfect agreement with [14],
but not for N > 2000. Instead, it seems that T�x� 
 Tk�x�
remains different from zero for N ! 1. The analogous
results for r � 1:618 are shown in Fig. 3. In that case, the
scaling observed in [14] is confined to very small N, not
180601-2
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FIG. 2 (color). T�x� 
 Tk�x� against x=N for r � 1:22, where
Tk�x� � �T2=3

1 
 �T2=3
1 
 T2=3

2 �x=N�2=3 is the temperature profile
according to kinetic theory. In order to reduce statistical
fluctuations, we averaged in the curves for N � 1023 over
three successive values of x.
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shown in the figure. The fact that T�x� 
 Tk�x� remains
finite for N ! 1 is now obvious. In contrast to a con-
jecture in [9], the temperature profile also does not be-
come linear for large N. All results for r � 1:618 are
qualitatively also true for r � 2:62 (not shown).

These results are easily understood. For r � 1:22, we
are in the small-r regime. This explains the slow conver-
gence of � with N and the weakness of long time tails,
manifested in the agreement with kinetic theory. Only at
very large N, we do see the correct asymptotics. For r �
1:618 and 2.62, we are no longer in this regime, the long
time tails are stronger, and the disagreement with kinetic
theory is more obvious.

In addition to systems driven by thermostats at differ-
ent temperatures, we also studied systems in equilibrium
with periodic boundary conditions. Here the Green-Kubo
formula allows � to be calculated from an integral over
the heat current autocorrelation hJ�t�J�0�i [4]. In Fig. 4 we
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FIG. 3 (color). T�x� 
 Tk�x� against x=N for r � 1:618.
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show this, after suitable normalization and after multi-
plication by a power of t which makes it constant for large
N and t. We see strong oscillations with periods / N
which reflect the dominance of (damped) sound waves
with a fixed velocity of sound (see also [15]). They were
mistaken for statistical fluctuations in [9], showing
clearly that the simulations of [9] have not reached the
asymptotic regime in contrast to what the authors as-
sumed. Our data suggest that hJ�t�J�0�i � t
0:66 for large
N with a cutoff at t / N, giving � � 0:34 in perfect
agreement with our previous estimate.

A 1D hard-particle gas should be described macro-
scopically by hydrodynamics, i.e., by the Burgers, respec-
tively, Kardar-Parisi-Zhang (KPZ), equation [17]. If we
assume that heat diffusion scales similar to diffusion in
KPZ, we might expect � � 1=3 in agreement with our
numerics. But we should warn that particle spreading in
the 1D hard-particle gas is not superdiffusive (unpub-
lished data; for r � 1 see [18]), so the relation with
KPZ is not trivial.

It is easy to prove that the 1D hard-point gas is not cha-
otic in the usual sense. Consider an infinitesimal pertur-
bation vi�t�!vi�t���vi�t� and its weighted L2 norm,
jj�v�t�jj2�f

PN
i�1mi��vi�t��

2g1=2. Since the �vi�t� change
during a scattering according to the same Eq. (1) as the
velocities vi�t� themselves, energy conservation leads to
jj�v�t�jj2�1. Indeed the absence of chaos is quite obvious
since there is no local instability. It seems to con-
tradict a widespread folklore that dissipation and entropy
production are tightly related to chaos (which sometimes
is true; e.g., [19], page 231) —although it is also appre-
ciated that this might not be always the case [20].

One solution to this puzzle is the observation [21],
going back to work by Wolfram on cellular automata
[22], that the notion of chaos in systems with infinitely
many degrees of freedom is ambiguous and is not neces-
sarily related to any local instability. In a spatially ex-
tended system, it makes perfect sense to use a norm
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which, in contrast to the L2 norm used above, puts most
weight on nearby regions and exponentially little weight
on far-away regions. With such a definition, the norm of a
perturbation moving towards (away from) the observer
with constant velocity will increase (decrease) exponen-
tially. More generally, also perturbations spreading dif-
fusively will lead to an increase of the uncertainty about
the local state for a short-sighted observer. For the 1D
hard-point gas, this means that there is no need for any
local instability to generate dissipation, local thermal
equilibrium, and mixing. In a nonequilibrium case, en-
tropy flow is provided by the stochastic thermostats at the
ends, while (coarse-grained) entropy is produced by the
diffusive propagation of perturbations.

In summary, we have given compelling evidence that
heat conduction in the 1D hard-point gas shows the
anomalous divergence with system size expected for
any generic 1D system, in spite of strong finite-size and
finite-time effects. This ‘‘normal’’ anomalous behavior
holds in spite of the fact that the system is not chaotic
in the usual sense, proving again that chaos in the form of
local instabilities is not needed for mixing behavior and
dissipation. Finally, we have discussed a possible connec-
tion to KPZ scaling.

We are indebted to Roberto Livi and Antonio Politi for
very helpful correspondence. W. N. is supported by the
DFG, Sonderforschungsbereich 237. P. G. thanks Henk
van Beijeren and Tomaz Prosen for discussions.

Note added.—A careful study of 1D hydrodynamics
[23] shows indeed that � � 1=3 as conjectured in the
present paper.
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